An Agent-Based Model of Economic Growth in Innovation Ecosystems

Swarmfest 2013

Christopher D. Hollander
Ivan Garibay
Complex Adaptive Systems Laboratory
University of Central Florida
Orlando, FL, USA

In collaboration with:
Thomas O’Neal (Office of Research & Commercialization)
Cameron Ford (College of Business Administration)
University of Central Florida
Orlando, FL, USA
Introduction

• We are in the process of creating an agent-based model of economics that treats economies as ecosystems.
• We are doing this to gain a better understanding of the relationship between innovation and economic growth.
 – Because current growth models oversimplify
Overview

• The Model
 – Foundational concepts
 – Agents
 – Output
 • Network structures
 • Macroeconomic Measures

• The Experiments
FOUNDATIONAL CONCEPTS
Basic Circular Flow Model

Source: google images, “circular flow model” – Original author unknown
Ecological Networks

Source: http://dx.doi.org/10.1016/j.ocecoaman.2012.05.017
Transformation Rules

\{X\} \rightarrow \text{Transformed Into} \rightarrow \{Y\}

Resources --> Resources
Economic Ecosystem
One Source / One Sink (OSOS) System
AGENTS
Implicit Agents

Environment

Spatial Environment

Government
Source Agents

Resources from Environment → R_{out} → Resources to Agents

Money to Government ← R_{out} ← Money from Agents

Actions: Trade, Adjust Prices
Adaptive Resource Transformers

Resources to Environment

Resources from Agents \(R_{in} \) \(R_{out} \) Money to Agents

Money to Agents \($ \) Money from Agents

Money to Government

Actions: Move, Trade, Produce, Adjust Prices, Reproduce, Die
Sink Agents

Resources from Agents → R_{in} → Resources to Environment

Money to Agents ← R_{in} ← Money from Government

Actions: Move, Trade
Economic Ecosystem
One Source / One Sink (OSOS) System
Simulation

<table>
<thead>
<tr>
<th>Setup</th>
<th>Go</th>
<th>Go Once</th>
<th>On/Off births?</th>
<th>On/Off death?</th>
</tr>
</thead>
<tbody>
<tr>
<td>num-resources</td>
<td>maxresources</td>
<td>source-price-set</td>
<td>use-seed?</td>
<td>seed</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>100</td>
<td>1</td>
<td>3715563</td>
</tr>
<tr>
<td>price-stability</td>
<td>source-price</td>
<td>price-change</td>
<td>min-firm-price</td>
<td>min-source-price</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Source Controls

<table>
<thead>
<tr>
<th>num-sources</th>
<th>source-diversity</th>
<th>initial-source-quantity</th>
<th>source-capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Firm Controls

<table>
<thead>
<tr>
<th>num-firms</th>
<th>initial-firm-quantity</th>
<th>initial-money</th>
<th>vision-radius</th>
<th>transfer-radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>30</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>dissipation-probability</td>
<td>dissipation-rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sink Controls

<table>
<thead>
<tr>
<th>num-sinks</th>
<th>initial-sink-quantity</th>
<th>sink-capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Reproduction

<table>
<thead>
<tr>
<th>reproduction-type</th>
<th>alters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>space-threshold</td>
<td>space-probability</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>min特斯pan</td>
<td>maxtrims</td>
</tr>
<tr>
<td>0</td>
<td>50000</td>
</tr>
</tbody>
</table>
Network Structures and Macroeconomic Measures

OUTPUT
Interaction Network
Species Network

0 -> 0
0 -> 1
1 -> 2
2 -> 3
3 -> 1
3 -> 3
Transformation Network

Type I Innovation

Type II Innovation
Macroeconomic Measures

- GDP
- Technology Distribution
- Wealth Distribution
- Transformation Network Density
- Production
- Price
- Population
EXPERIMENTS
Experiments

• Replication of experiments done using similar simulations

• Does economic assistance impact economic performance?
 – GDP per Capita
 – Price
 – Production

• Does economic assistance change the density of the transformation network?

• Does economic assistance change the population size?

• 6 experiments at 20 Replications each (using CRN)
• Money and Resources | Young, Old, Random
Results: GDP per Capita

Data > 0 implies GDP per Capita is higher when there is assistance
Results: Price

Data > 0 implies Price is higher when there is assistance
Results: Production

Data > 0 implies Production is higher when there is assistance
Results: Transformation Network

Data > 0 implies Transformation Density is higher when there is assistance.
Results: Population

Data > 0 implies Population is higher when there is assistance
Results Summary

• Economic assistance
 – Has broad and unexpected impacts
 – Results depend on who gets assistance and what type of assistance they get
 – Can have a long lasting impact on the economy

• These results are consistent with earlier versions of our model.
Questions or Feedback?

THANK YOU!